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Abstract

The Mean—Value Decomposition by Centre (MVDC) is a purely algebraic centring
technique that eliminates the dominant growth of a finite product or sum and organises
the residue into rapidly decaying moments. The first part of the note proves that the
cascade coefficients generated by MVDC coincide with a closed family of central Bernoulli
numbers C..(n); they are given explicitly by Norlund generalised Bernoulli polynomials
and enjoy a compact exponential generating function. In the second part we transfer the
same machinery to truncated Euler products: for any N and Js > 1 the missing tail
In¢(s) —In¢n(s) admits the elementary expansion nuy — >, <o(—1)""1S,./(rn"1) + tail
with moment sums S, of order O(n) and a rigorously bounded remainder. Truncating
after six terms yields 1078-107? accuracy already for N < 10%. These results demon-
strate that MVDC provides a unified, elementary route from Bernoulli-type constants to
high—precision corrections of Euler products.

Let P, =[], a; be a finite product whose individual factors are a; and set f(i) = Ina;. The
MVDC method isolates the dominant growth by factoring out

H:= e = k7, k= eM.
All subsequent coefficients therefore control the residual term R(n) = Y " ; g(4) in
P, = H exp(R(n)).

Euler-Maclaurin for centred function g gives (after cancelling Iy and Iy)

i = Z 2j<i’2j—1>g<2ﬂ'—”<n>, (1)

which leads to the first layer coefficients co;_1 = Baj/ [2j(2j — 1)]
Higher moments of the residual are




Definition of C-Bernoulli numbers

Norlund polynomials are defined
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Definition 1 (C-Bernoulli numbers). Forr > 1 and fized n we define

Cr(m) = ZX B0 (<) B (0= ).

From (3) we have S;(n) = Cy(n), and therefore from (2) we get
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Proof of the identity (3)

The formula is a finite—sum version of the classical Faulhaber theorem and can be justified in a
few elementary steps; we reproduce the argument so the present note remains self-contained.

Step 1: Faulhaber expansion. For any non—negative integer p the power sum admits the
well-known expansion (Jacob Bernoulli, 1713)
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where B; are the ordinary Bernoulli numbers. Equation (5) is obtained by repeated telescoping

or, more compactly, by expanding the generating function etf_ and comparing coefficients.

Step 2: Translation to Norlund polynomials. Norlund (1914) introduced the gener-
alised Bernoulli polynomials

k& .
B = 3 (1] eve i

Replacing p — r and rearranging (5) one obtains the compact identity
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Step 3: Specialisation. Setting z = —p; and m = n gives exactly (3), i.e.

Sp(m) =070 — ) = T [BE () — B - )] =
=1

This completes the proof and shows that identity (3) is a simple consequence of the classical
Faulhaber—Bernoulli expansion.

1 Generating function

Theorem 1. For fized n we have

e_#lt — e(n_:u‘l)t

t'r
ZCr(n)ﬁ - t(et—1)

r>0

Proof. Expand the right-hand side into a series with respect to t; use the geometric series
for 1/(e’ — 1) and exponentials. The coefficient at " is exactly the expression (3), which
corresponds to the definition of C.(n). O

Limit. When n — oo, the expression in the brackets e #1t — (=11t approaches —1, so
li_}m Cy(n) = By41, the classical Bernoulli number.
n (o.)

2 Explicit first terms (factorial)

For a; =i and py = 137 | Ini we get

Cl(n) —0,
1 1
Ca(n) = B o
1 1
Cs(n) = =5t g2
1 1 1 1
Cy(n) = — — — +

T 720 48n ' 242 16m3°

The series (4) with these terms reproduces the numerical residual values from MVDC with
accuracy O(n=?).

3 A purely algebraic construction (no Euler—-Maclaurin)

The previous derivation invoked the centred Euler—-Maclaurin formula only as a convenient
shorthand. One can arrive at exactly the same coefficients C,.(n) using nothing besides Taylor
expansion and finite power sums. Sketch:

1. Centred logs. Set g(i) = Ina; — py with yy = 23" | Ina;. Then R(n) = Y1 g(i) =
O(1).

2. Expand about the mid—index. With m = (n+1)/2 write g(m+k) = 3,5, ¢ (m)k" /r!
for k € [=h,h], h=(n—1)/2. -

3. Parity cancellation. ZZ:_h k" vanishes for even r; for odd r = 2s + 1 it equals an
explicit polynomial in A containing only binomial coefficients (Faulhaber sums).
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4. Define Caqy1(n) = ke B#FL Then R(n) = Y50 9@ (m) Caspa(n).

(2s+1)

5. Moment re-expansion. Each g2t (m) is a linear combination of centred moments
> (Ina; — pq)", which are themselves polynomials in the same C—numbers; collecting
powers of 1/n reproduces Eq. (4).

6. Identification. Rewriting the purely combinatorial Cys11(n) via Newton interpolation
yields exactly the Norlund representation from Sec. 2, proving that Bernoulli/N6rlund
objects emerge a posteriori rather than being required.

This emphasises that MVDC extracts heavy asymptotics from elementary algebra: once the
dominant growth is factored out, the remaining constants are just centred power sums.
4 Application to truncated Euler products

The mean—value centring technique can be transferred verbatim from finite products to the
Euler product for the Riemann zeta—function. Let

wis)=[[a-»p)"" Rs>1, NeN,
p<N

and write the remaining “tail” as

Pon(s) = lo) _ [Ta-»"

Define for the primes in an interval (N, M| with n = 7(M) — w(N)

flp)=-m(1-p~°), = % S ), glp)=fp) - m.

N<p<M

Since Y g(p) = 0 we may expand exactly as in Eq. (4). A straightforward calculation gives
the centred expansion

_1\r—1
lnP>N(s)—nu1+Z(r:L2_15r + Ru(s),  Se= > g, (6)

r>2 N<p<M

o0
where the remainder satisfies |Ry/(s)| < / 2% /Inz dz. Truncating the series after r = 6

already yields micro-accurate results.

Numerical illustration (s = 2)

Table 1 compares the exact missing term A = In {(2)—In {5 (2) with the MVDC approximation
(main term np; + series up to r = 6 + integral tail with M = 10N).

The error decays empirically like n~3, matching the theoretical estimate when the series
is cut after the r-th term. This example confirms that the MVDC philosophy extends beyond
classical factorial-type products and provides practical, high-precision corrections to Euler
products.



N m(N) n A  MVDC error
1000 168 1061 1.27 x 104 6.0 x 108
5000 669 4464 2.11 x 107° 2.6 x 1079

10000 1229 8363 9.82 x 1076 1.4 x 1079

Table 1: Accuracy of MVDC tail expansion for the Euler product at s = 2 (error after six
terms).

4.1 Extension to Dirichlet L-functions

The same moment—centred mechanism works for any primitive Dirichlet character y modulo
q. Replace each factor (1 - pfs)f1 by

(1—x(p)p )", plq, RNs>1.

For a cut—off N and auxiliary bound M let

fr(p) = =In(1 = x(p)p~?), N <p< M,
pi(x) = % > ), 9x(p) = fx(p) — 1 (x),
N<p<M
S(x) =Y. o), n=m(M)—n(N).
N<p<M

Because ) g, (p) = 0 the logarithm of the tail of the L-product expands verbatim as

L(s,x)

In
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where Ly (s, x) = [[,<y(1 — x(p)p~*) 7! and [Rary(s)| < ¢™ [i7 7% /Inz dz. Numerically
we obtain the same n~("max—1) decay as for zeta.

Example. Take the non—trivial character modulo 3

1, n=1 (mod3),
x3(n) =4 -1, n=2 (mod 3),
0, 3|n.

Using the Python script experiments/mvdc_dirichlet_tail.py (in the public repository)
we evaluated L(2,x3) with cut-off N = 10% and explicit tail up to M = 10%. Table 2 shows
that the six-term MVDC expansion matches the true missing tail to 8 x 1071

Quantity numerical value absolute error
missing tail A —5.618455 x 1073 —
MVDC (r <6) —5.610236 x 1078 8.22 x 107!

Table 2: MVDC correction for L(2,x3) with N = 103, M = 106.

This confirms that MVDC applies unchanged to Dirichlet L—series; only the integrand in
the remainder term must reflect the arithmetic condition p = a (mod q).


https://github.com/robopol/MVDC

5 Conclusion

MVDC cascade coefficients form a well-structured family {C)(n)}, which:
e interpolates Bernoulli numbers at finite n;
e has rational generating functions and natural recursion through Noérlund polynomials;
e can be used for systematic calculation of higher MVDC cascades.

This relationship anchors MVDC in classical theory of special polynomials and opens the door
to further investigation (zeta-functions, g-analogues, Euler products).
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