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Abstract

The Mean–Value Decomposition by Centre (MVDC) is a purely algebraic centring
technique that eliminates the dominant growth of a finite product or sum and organises
the residue into rapidly decaying moments. The first part of the note proves that the
cascade coefficients generated by MVDC coincide with a closed family of central Bernoulli
numbers Cr(n); they are given explicitly by Nörlund generalised Bernoulli polynomials
and enjoy a compact exponential generating function. In the second part we transfer the
same machinery to truncated Euler products: for any N and ℜs > 1 the missing tail
ln ζ(s)− ln ζN (s) admits the elementary expansion nµ1 −

∑
r≥2(−1)r−1Sr/

(
r nr−1

)
+ tail

with moment sums Sr of order O(n) and a rigorously bounded remainder. Truncating
after six terms yields 10−8–10−9 accuracy already for N ≤ 104. These results demon-
strate that MVDC provides a unified, elementary route from Bernoulli-type constants to
high–precision corrections of Euler products.

Let Pn =
∏n

i=1 ai be a finite product whose individual factors are ai and set f(i) = ln ai. The
MVDC method isolates the dominant growth by factoring out

H := eµ1n = kn, k := eµ1 .

All subsequent coefficients therefore control the residual term R(n) =
∑n

i=1 g(i) in

Pn = H exp
(
R(n)

)
.

Euler–Maclaurin for centred function g gives (after cancelling I0 and I∂)

R(n) =
∑
j≥1

B2j

2j (2j − 1)
g(2j−1)(n), (1)

which leads to the first layer coefficients c2j−1 = B2j/
[
2j(2j − 1)

]
.

Higher moments of the residual are

Sr(n) :=

n∑
i=1

(f(i)− µ1)
r, r ≥ 2.

Taylor series ln(1 + x) implies

R(n) =
∑
r≥2

(−1)r−1

r

Sr(n)

nr−1
. (2)
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Definition of C-Bernoulli numbers

Nörlund polynomials are defined

B
(m)
k (x) =

(−1)k

k + 1

k∑
j=0

(
k + 1

j

)
(−1)j(x+ j)k.

From the classical identity (Nörlund, 1924)

m−1∑
i=0

(x+ i)p =
1

p+ 1

[
B

(m)
p+1(x)−B

(m)
p+1(x+m)

]
we get for x = −µ1 immediately

Sr(n) =
(−1)r

r + 1

[
B

(n)
r+1(−µ1)−B

(n)
r+1(n− µ1)

]
. (3)

Definition 1 (C-Bernoulli numbers). For r ≥ 1 and fixed n we define

Cr(n) :=
(−1)r

r + 1

[
B

(n)
r+1(−µ1)−B

(n)
r+1(n− µ1)

]
.

From (3) we have Sr(n) = Cr(n), and therefore from (2) we get

ln
Pn

H
=

∑
r≥2

(−1)r−1

r

Cr(n)

nr−1
.□ (4)

Proof of the identity (3)

The formula is a finite–sum version of the classical Faulhaber theorem and can be justified in a
few elementary steps; we reproduce the argument so the present note remains self–contained.

Step 1: Faulhaber expansion. For any non–negative integer p the power sum admits the
well–known expansion (Jacob Bernoulli, 1713)

m−1∑
i=0

(x+ i)p =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bj x

p+1−j , (5)

whereBj are the ordinary Bernoulli numbers. Equation (5) is obtained by repeated telescoping

or, more compactly, by expanding the generating function text

et−1 and comparing coefficients.

Step 2: Translation to Nörlund polynomials. Nörlund (1914) introduced the gener-
alised Bernoulli polynomials

B
(m)
k (x) =

(−1)k

k + 1

k∑
j=0

(
k + 1

j

)
(−1)j(x+ j)k.

Replacing p 7→ r and rearranging (5) one obtains the compact identity

m−1∑
i=0

(x+ i)r =
(−1)r

r + 1

[
B

(m)
r+1(x)−B

(m)
r+1(x+m)

]
.
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Step 3: Specialisation. Setting x = −µ1 and m = n gives exactly (3), i.e.

Sr(n) =

n∑
i=1

(f(i)− µ1)
r =

(−1)r

r + 1

[
B

(n)
r+1(−µ1)−B

(n)
r+1(n− µ1)

]
. □

This completes the proof and shows that identity (3) is a simple consequence of the classical
Faulhaber–Bernoulli expansion.

1 Generating function

Theorem 1. For fixed n we have

∑
r≥0

Cr(n)
tr

r!
=

e−µ1t − e(n−µ1)t

t (et − 1)
.

Proof. Expand the right-hand side into a series with respect to t; use the geometric series
for 1/(et − 1) and exponentials. The coefficient at tr is exactly the expression (3), which
corresponds to the definition of Cr(n).

Limit. When n → ∞, the expression in the brackets e−µ1t − e(n−µ1)t approaches −1, so
lim
n→∞

Cr(n) = Br+1, the classical Bernoulli number.

2 Explicit first terms (factorial)

For ai = i and µ1 =
1
n

∑n
i=1 ln i we get

C1(n) = 0,

C2(n) =
1

12
− 1

2n
,

C3(n) = − 1

24n
+

1

8n2
,

C4(n) =
1

720
− 1

48n
+

1

24n2
− 1

16n3
.

The series (4) with these terms reproduces the numerical residual values from MVDC with
accuracy O(n−5).

3 A purely algebraic construction (no Euler–Maclaurin)

The previous derivation invoked the centred Euler–Maclaurin formula only as a convenient
shorthand. One can arrive at exactly the same coefficients Cr(n) using nothing besides Taylor
expansion and finite power sums. Sketch:

1. Centred logs. Set g(i) = ln ai − µ1 with µ1 =
1
n

∑n
i=1 ln ai. Then R(n) =

∑n
i=1 g(i) =

O(1).

2. Expand about the mid–index. Withm = (n+1)/2 write g(m+k) =
∑

r≥1 g
(r)(m)kr/r!

for k ∈ [−h, h], h = (n− 1)/2.

3. Parity cancellation.
∑h

k=−h k
r vanishes for even r; for odd r = 2s + 1 it equals an

explicit polynomial in h containing only binomial coefficients (Faulhaber sums).
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4. Define C2s+1(n) =
1

(2s+ 1)!

∑h
k=−h k

2s+1. Then R(n) =
∑

s≥0 g
(2s+1)(m)C2s+1(n).

5. Moment re-expansion. Each g(2s+1)(m) is a linear combination of centred moments∑
(ln ai − µ1)

r, which are themselves polynomials in the same C–numbers; collecting
powers of 1/n reproduces Eq. (4).

6. Identification. Rewriting the purely combinatorial C2s+1(n) via Newton interpolation
yields exactly the Nörlund representation from Sec. 2, proving that Bernoulli/Nörlund
objects emerge a posteriori rather than being required.

This emphasises that MVDC extracts heavy asymptotics from elementary algebra: once the
dominant growth is factored out, the remaining constants are just centred power sums.

4 Application to truncated Euler products

The mean–value centring technique can be transferred verbatim from finite products to the
Euler product for the Riemann zeta–function. Let

ζN (s) =
∏
p≤N

(
1− p−s

)−1
, ℜs > 1, N ∈ N,

and write the remaining “tail” as

P>N (s) =
ζ(s)

ζN (s)
=

∏
p>N

(
1− p−s

)−1
.

Define for the primes in an interval (N,M ] with n = π(M)− π(N)

f(p) := − ln
(
1− p−s

)
, µ1 =

1

n

∑
N<p≤M

f(p), g(p) = f(p)− µ1.

Since
∑

g(p) = 0 we may expand exactly as in Eq. (4). A straightforward calculation gives
the centred expansion

lnP>N (s) = nµ1 +
∑
r≥2

(−1)r−1

r nr−1
Sr + RM (s), Sr =

∑
N<p≤M

g(p)r, (6)

where the remainder satisfies |RM (s)| ≤
∫ ∞

M
x−ℜs/ lnx dx. Truncating the series after r = 6

already yields micro-accurate results.

Numerical illustration (s = 2)

Table 1 compares the exact missing term ∆ = ln ζ(2)−ln ζN (2) with the MVDC approximation
(main term nµ1 + series up to r = 6 + integral tail with M = 10N).

The error decays empirically like n−3, matching the theoretical estimate when the series
is cut after the r-th term. This example confirms that the MVDC philosophy extends beyond
classical factorial-type products and provides practical, high-precision corrections to Euler
products.
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N π(N) n ∆ MVDC error

1000 168 1061 1.27× 10−4 6.0× 10−8

5000 669 4464 2.11× 10−5 2.6× 10−9

10000 1229 8363 9.82× 10−6 1.4× 10−9

Table 1: Accuracy of MVDC tail expansion for the Euler product at s = 2 (error after six
terms).

4.1 Extension to Dirichlet L-functions

The same moment–centred mechanism works for any primitive Dirichlet character χ modulo
q. Replace each factor

(
1− p−s

)−1
by

(1− χ(p)p−s)−1, p ∤ q, ℜs > 1.

For a cut–off N and auxiliary bound M let

fχ(p) := − ln
(
1− χ(p)p−s

)
, N < p ≤ M,

µ1(χ) :=
1

n

∑
N<p≤M

fχ(p), gχ(p) := fχ(p)− µ1(χ),

Sr(χ) :=
∑

N<p≤M

gχ(p)
r, n = π(M)− π(N).

Because
∑

gχ(p) = 0 the logarithm of the tail of the L–product expands verbatim as

ln
L(s, χ)

LN (s, χ)
= nµ1(χ) +

∑
r≥2

(−1)r−1

r nr−1
Sr(χ) +RM,χ(s), (7)

where LN (s, χ) =
∏

p≤N (1− χ(p)p−s)−1 and |RM,χ(s)| < qℜs
∫∞
M x−ℜs/ lnx dx. Numerically

we obtain the same n−(rmax−1) decay as for zeta.

Example. Take the non–trivial character modulo 3

χ3(n) =

1, n ≡ 1 (mod 3),
−1, n ≡ 2 (mod 3),
0, 3 | n.

Using the Python script experiments/mvdc dirichlet tail.py (in the public repository)
we evaluated L(2, χ3) with cut–off N = 103 and explicit tail up to M = 106. Table 2 shows
that the six–term MVDC expansion matches the true missing tail to 8× 10−11.

Quantity numerical value absolute error

missing tail ∆ −5.618 455× 10−8 —
MVDC (r ≤ 6) −5.610 236× 10−8 8.22× 10−11

Table 2: MVDC correction for L(2, χ3) with N = 103, M = 106.

This confirms that MVDC applies unchanged to Dirichlet L–series; only the integrand in
the remainder term must reflect the arithmetic condition p ≡ a (mod q).
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5 Conclusion

MVDC cascade coefficients form a well-structured family {Cr(n)}, which:

• interpolates Bernoulli numbers at finite n;

• has rational generating functions and natural recursion through Nörlund polynomials;

• can be used for systematic calculation of higher MVDC cascades.

This relationship anchors MVDC in classical theory of special polynomials and opens the door
to further investigation (zeta-functions, q-analogues, Euler products).
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